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ABSTRACT
Laminopathies are genetic diseases due to mutations or altered post-translational processing of nuclear envelope/lamina proteins. The

majority of laminopathies are caused by mutations in the LMNA gene, encoding lamin A/C, but manifest as diverse pathologies including

muscular dystrophy, lipodystrophy, neuropathy, and progeroid syndromes. Lamin-binding proteins implicated in laminopathies include

lamin B2, nuclear envelope proteins such as emerin, MAN1, LBR, and nesprins, the nuclear matrix protein matrin 3, the lamina-associated

polypeptide, LAP2alpha and the transcriptional regulator FHL1. Thus, the altered functionality of a nuclear proteins network appears to be

involved in the onset of laminopathic diseases. The functional interplay among different proteins involved in this network implies signaling

partners. The signaling effectors may either modify nuclear envelope proteins and their binding properties, or use nuclear envelope/lamina

proteins as platforms to regulate signal transduction. In this review, both aspects of lamin-linked signaling are presented and the major

pathways so far implicated in laminopathies are summarized. J. Cell. Biochem. 112: 979–992, 2011. � 2010 Wiley-Liss, Inc.
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I n the last 15 years, increasing interest in the functions of

the nuclear envelope has been kindled by the finding that some

15 human diseases are linked to mutations in nuclear envelope

proteins. Among these diseases, referred to as ‘‘laminopathies,’’

more than half are caused by mutations of the LMNA gene, which

encodes lamin A/C [Worman et al., 2010]. However, other nuclear

envelope constituents have been implicated: mutations in the genes

encoding for emerin, the nuclear envelope partner of lamin A/C, the

lamin B receptor (LBR), MAN1, nesprin 1 and nesprin 2, give rise to

tissue-specific laminopathies, while mutations in the prelamin A

endoprotease cause systemic laminopathies [Worman et al., 2010].

Moreover, LAP2 alpha, lamin B1 and lamin B2, the nuclear lamina

partners of lamin A/C, have been implicated in genetic disorders

affecting heart, brain and nervous system [Dauer and Worman,

2009]. Matrin3, a nucleoskeleton constituent, has been further

associated with autosomal dominant distal myopathy [Senderek

et al., 2009]. Thus, it appears that proteins once considered mere

structural constituents of the nucleus, play key roles in tissue and

organ functionality in a cell-type specific way. Systemic lamino-

pathies, on the other hand, implicate nuclear envelope/lamina

proteins in more general mechanisms regulating cellular and

organismal growth and senescence.
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Based on this complex and intriguing picture of genetic disorders

linked to nuclear envelope/lamina genes two major hypotheses

come into play. First, since many overlapping clinical phenotypes

are observed in laminopathies linked to different genes, there must

be a functional interplay among some, if not all, the different

proteins causing diseases. Secondly, the interplay among lamino-

pathy-associated proteins must involve versatile cellular tools,

mostly the signaling pathways. These two hypotheses will be

presented in this review, based on available experimental data,

bioinformatics prediction and proved or suggested mechanisms. We

will present different proteins linked to laminopathies, signaling

pathways involving these proteins, either as targets or effectors of

cellular signals, and pathogenetic mechanisms involving these

signaling pathways.

THE PROTEIN NETWORK

The nuclear lamina is a stress-resistant elastic meshwork of type V

intermediate filaments, the type-A and type-B lamins [Prokocimer

et al., 2009]. Although it has been assumed that the nuclear lamina is

a structural support to the nuclear envelope membranes, many
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experimental data indicate that it is directly or indirectly, through

interactions with integral proteins of the inner nuclear membrane

(INM proteins), involved in a variety of cell functions [Prokocimer

et al., 2009]. The nuclear membrane is a double membrane

interrupted by the nuclear pore complexes, which constitutes a

structural continuum with the endoplasmic reticulum membranes.

The peripheral lamins interact with chromatin associated proteins

on the nucleoplasmic side and with nuclear envelope proteins on the

membrane side [Shimi et al., 2008]. Multiple interactions between

lamins and nuclear envelope KASH and SUN proteins establish a

link between the nucleus and the cytoskeleton [Schneider et al.,

2010], thereby contributing to the maintenance of nuclear

architecture, high-order chromatin arrangement, nuclear anchorage

and positioning, as well as modulation of transcriptional regulator

availability. The role of lamins is likely to coordinate all the

functions mentioned above.

The major isoforms of A-type lamins (lamin A and lamin C) are

generated by use of an alternative 50 splice site in exon 10. Unlike

lamin C, lamin A is translated as prelamin A and undergoes post-

translational processing steps at the C-terminal CaaX motif

[Rusinol and Sinensky, 2006; Lattanzi et al., 2007a]. B-type lamins

are encoded by two genes, LMNB1 and LMNB2, and at least one

B-type lamin is expressed in all cell types throughout development.

B-type lamins undergo post-translational modifications similar to

those of lamin A; however they remain farnesylated [Malhas et al.,

2007]. As a consequence, B-type lamins remain attached to the

nuclear membrane even in mitosis, whilst mature lamin A and lamin

C are solubilized in mitosis and can also localize throughout the

nucleoplasm in interphase cells [Naetar et al., 2008; Naetar and

Foisner, 2009]. Because no association has been found between

human diseases and loss-of-function mutations in lamin B genes, it

is possible that loss of these genes causes embryonic lethality

[Vergnes et al., 2004].

In the nucleoplasm, LAP2alpha is the most intriguing binding

partner of lamin A/C, since it serves as anchoring protein for

nucleoplasmic lamins [Naetar et al., 2008] and mediates lamin

interaction with cell cycle regulators in the pRb-E2F pathway

[Markiewicz et al., 2002]. The DNA binding protein BAF is a

mediator of lamin A/C interplay with chromosomes and interphase

chromatin [Montes de Oca et al., 2009]. However, BAF mutations

have not been so far identified in any laminopathic disease. On the

nuclear envelope side, lamin A binds emerin, nesprins 1 and 2, and

the nuclear envelope bridging proteins SUN1 and SUN2 [Prokocimer

et al., 2009] (not implicated, so far, in laminopathies). Interestingly,

SUN1 and SUN2 connect the inner nuclear membrane to the

perinuclear space and to cytoplasmic nesprins, thus providing a

structural and functional link between the nucleus and the

cytoplasm [Ostlund et al., 2009; Haque et al., 2010]. MAN1 also

binds to lamins at the nuclear envelope, and is part of a protein

platform regulating cellular signaling pathways, mostly those

dependent on TGF-b [Konde et al., 2010]. Lamin B, as well as lamin

A, bind LBR, a key constituent of the nuclear envelope which

harbors eight transmembrane domains [Worman et al., 1990].

Although the functional significance of lamin-LBR interplay has

been elusive, LBR has been demonstrated to regulate changes in

nuclear morphology and chromatin compaction during the cell
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cycle and cellular differentiation, a function also involving lamins

[Zwerger et al., 2010]. Finally, matrin 3, a nuclear matrix protein,

has been involved in chromosome anchorage and gene expression

regulation [Zeitz et al., 2009], a function overlapping with those

of lamins. In the same context, FHL1, a transcriptional regulator

recently associated with Emery–Dreifuss muscular dystrophy, has

been shown to play a key role in nuclear anchorage and myotube

hypertrophy [Cowling et al., 2008].

A common feature of several proteins causing laminopathies is

the regulation of the import/export of transcription factors and

transcriptional regulators at the nuclear envelope [Kind and van

Steensel, 2010]. Mature lamin A, MAN1, and emerin have been

demonstrated to negatively regulate the amount of translocated

transcriptional regulators, by either limiting their import or favoring

their export rate [Capanni et al., 2005; Markiewicz et al., 2006;

Gonzalez et al., 2008; Konde et al., 2010].

Thus, at least two functions, chromatin functional organization

and exchange of transcriptional regulators, are clearly shared by

diverse proteins implicated in laminopathies. Moreover, two

additional roles are being associated to several proteins causing

laminopathic disorders: regulation of nuclear positioning and

mechanosignaling transduction. In the latter functions nesprins,

emerin, lamin A, and FHL1 appear to be involved.

NUCLEAR ENVELOPE PROTEINS AND SIGNALING

A TYPE LAMINS

The major splicing products of the LMNA gene, lamin A and lamin C,

harbor several serine and threonine residues, which constitute

potential or proved targets of phosphorylating enzymes (Fig. 1)

[Prokocimer et al., 2009]. The known phosphorylation sites (Fig. 2)

in the lamin A/C sequence are serine 404, targeted by AKT1, serine

392 targeted by cdc2 kinase, serine 5, serine 525 and serine 625,

targeted by PKC isozymes [Martelli et al., 2002; Marmiroli et al.,

2009; Kuga et al., 2010]. The best known effect of lamin A/C

phosphorylation is protein de-polymerization, which allows break-

down of the nuclear lamina at the onset of mitosis. Cdk1 has also

been implicated in this process and it is necessary for lamina

disassembly [Heald and McKeon, 1990]. However, lamins are stably

phosphorylated in interphase cells and even in post-mitotic nuclei,

such as those of muscle fibers, where phosphorylation is dependent

on the insulin pathway [Cenni et al., 2005]. Moreover, we found that

reduced lamin A N-terminal phosphorylation is associated with

LMNA-linked muscle diseases [Cenni et al., 2005], while it has been

recently reported that specific phosphorylation at serine 458 of

A-type lamins occurs in muscle laminopathies [Mitsuhashi et al.,

2010]. Phosphoserine 458 is not found in normal cells or in non-

muscular laminopathies [Mitsuhashi et al., 2010]. Thus, lamin A/C

phosphorylation at specific sites plays a major role in muscle

function, possibly interfering with lamin intermolecular interac-

tions. Phosphorylation of lamins at S404 is specifically triggered by

Akt in the PI3-kinase insulin pathway and it has been implicated in

proper nuclear lamina organization [Cenni et al., 2008]. Interest-

ingly, the EDMD2 LMNA R401C mutation, within the Akt consensus

site of lamin A, reduces protein phosphorylation [Cenni et al., 2008].

Phosphorylation of S404 occurs throughout the cell cycle and likely
JOURNAL OF CELLULAR BIOCHEMISTRY



Fig. 1. The network of proteins mutated in laminopathies. FHL1, four and a half LIM domain 1; FACE1, farnesylated proteins-converting enzyme 1; LAP2a, lamina-associated

polypeptide 2 alpha; LBR, lamin B receptor. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
regulates the levels of the lamin A precursor protein [Marmiroli

et al., 2009]. It is conceivable that prelamin A phosphorylation at

this residue is necessary, for protein degradation. Dephosphoryla-

tion of lamin A/C is mostly carried out by protein phosphatase 1

(PP1) at the end of mitosis and it allows assembly of the nuclear

lamina [Steen and Collas, 2001]. PP1 activity is also important to

maintain nuclear envelope integrity in G1 phase and to prevent

apoptotic breakdown of the lamina [Steen et al., 2003]. Lamin A/C

is also sumoylated on lysine 201 [Zhang and Sarge, 2008].

Sumoylation appears to mediate proper assembly of the nuclear

lamina, yet the downstream events deserve further investigation.

Farnesylation of prelamin A occurs at a key aminoacid, cysteine

661, within the C-terminal CaaX box. Cysteine 661 is farnesylated

by the dimeric protein farnesyl transferase [Barrowman et al., 2008].

The modification is necessary for further processing of the lamin

A precursor, consisting of methylation of the same residue by the

enzyme Icmt, and double cleavage leading to production of

mature lamin A. While the biological significance of prelamin A

farnesylation is clearly the creation of a recognition site for the

prelamin A endoprotease ZMPSTE24, methylation does not always

appear a limiting step [Coffinier et al., 2007] for protein maturation

and its biological role is still matter of debate. Post-translational

processing of prelamin A ends with cleavage of all the modified

protein domains. Thus, farnesylation and methylation do not seem

to influence the biological properties of mature lamin A. Prelamin A

processing could be a fine tool to modulate lamin A levels.

Alternatively, or additionally, it could facilitate nuclear envelope

localization of lamin A [Sinensky et al., 1994; Corrigan et al., 2005].

Importantly, prelamin A has been shown to play itself a biological

role in the regulation of chromatin dynamics [Lattanzi et al., 2007b],

transcription factor translocation [Capanni et al., 2005] and cellular

differentiation [Capanni et al., 2008].

B TYPE LAMINS

B type lamins are ubiquitously expressed at the nuclear envelope

and at least one B type lamin is found in any developmental stage.

Lamin B1 is encoded by the LMNB1 gene on chromosome 5, while

lamin B3 and B2 are alternative splicing products of the LMNB2

gene on chromosome 19 [Biamonti et al., 1992]. Multiple serine/
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threonine residues in lamins undergo phosphorylation (Fig. 2).

The major phosphorylation sites in lamin B2 are threonine 14, serine

17, serine 385, serine 387, and serine 401 [Kuga et al., 2010].

Threonine phosphorylation has been associated with mitotic

breakdown of the lamina [Peter et al., 1990], while interphase,

mostly S-phase, phosphorylation of lamin B2 has been demon-

strated [Kill and Hutchison, 1995]. Some of the residues undergoing

phosphorylation in lamin B1 or B2 may be also phosphorylated in

other lamin forms, including lamin A or C, which suggests a

concerted mechanism of regulation of some fundamental functions.

Interphase phosphorylation of serine 387 is mediated by PKC [Kuga

et al., 2010], while mitotic phosphorylation is mediated by cdc2

kinase, which also modifies other aminoacids. Dephosphorylation of

lamin B is elicited by PP1 and it is linked to assembly of the nuclear

lamina at the end of mitosis [Steen and Collas, 2001]. Importantly,

lamin B, as well as lamin A/C and emerin, can be also phos-

phorylated during viral infections, a mechanism allowing break-

down of the lamina and representing a potential target of anti-viral

therapy [Jacque and Stevenson, 2006; Camozzi et al., 2008; Leach

and Roller, 2010].

The CaaX box of B type lamins is farnesylated. However, B type

lamins undergo partial proteolysis by the enzyme Rce1 and remain

permanently farnesylated. Farnesylation of B type lamins has been

implicated in their anchorage to the nuclear membrane, but might

also mediate protein–protein interactions [Maske et al., 2003;

Delbarre et al., 2006].

EMERIN

Emerin is the first nuclear envelope protein associated with

laminopathies [Bione et al., 1994]. It is encoded by the EMD gene

on chromosome X and spans one transmembrane domain and a LEM

domain, which binds BAF [Tifft et al., 2009]. Phosphorylation of

emerin may potentially occur at 21 serine, 18 tyrosine, and 3

threonine residues (Fig. 2). Proven phosphorylation sites are serine

49, which is phosphorylated by PKA along with another as yet

unidentified residue [Roberts et al., 2006] and several tyrosine

residues, phosphorylated by specific kinases. Emerin is phosphory-

lated by non-receptor tyrosine kinases Src and Abl at residues Y59,

Y74 and Y95, Y19 and Y161 [Tifft et al., 2009]. Phosphorylation is
LAMINOPATHIES AND LAMIN-ASSOCIATED SIGNALING PATHWAYS 981



Fig. 2. Phosphosite results for the indicated human proteins (available at www.phosphosite.org). UniProtKB/SwissProt accession number and the number of amino acids are

also indicated. Post-translational modification (PTM) reported are: phosphorylation at Serine (S), Threonine (T), Tyrosine (Y), and acetylation at Lysine (K). Sites are represented

in red (validated) or in black (predicted). Domains abbreviations are: intermediate filament tail (IF tail); LAP2, Emerin, and MAN1 domain (LEM); trans membrane domain (TM);

ergosterol biosynthesis domain (ERG4/ERG 24); calponin Homology domain (CH); KID repeat domain (KID); LIN-11, Isl1, and MEC-3 domain (LIM). [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 3. Signaling pathway involved in laminopathies.
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required to bind BAF and to regulate BAF interaction, even if some

of the phosphorylated aminoacids are outside the LEM domain

[Tifft et al., 2009]. Thus, emerin can be targeted by several kinases

including PKA [Roberts et al., 2006], Src, Abl, Her2 [Tifft et al.,

2009], and potentially casein kinase II [Ellis et al., 1998].

Dephosphorylation of emerin occurs in vivo and it is inhibited

by okadaic acid [Cartegni et al., 1997; Lattanzi et al., 2003].

Dephosphorylation by PP1 may influence emerin binding proper-

ties: in particular, the interaction of emerin with nuclear and

cytoplasmic actin in mouse myoblasts is weakened by PP1 activity

[Lattanzi et al., 2003]. However, since less specific dephosphoryla-

tion increases actin binding [Lattanzi et al., 2003], we suggest that

there must be specific phosphorylated residues which mediate

protein interaction. The significance of emerin phosphorylation/

dephosphorylation events may be summarized as follows. Emerin

binding to its partner proteins, including BAF and actin, is regulated

by its phosphorylation status. This events may in turn affect emerin

association with chromatin. Moreover, since Her2 and Src kinases

regulate striated muscle function, emerin has been suggested to

integrate signals at the myocyte nuclear envelope [Tifft et al., 2009].

NESPRINS

Nesprins are giant proteins of the nuclear envelope and the

cytoskeleton. Nesprin 1 and 2, mutated in Emery–Dreifuss muscular

dystrophy [Zhang et al., 2007] and cerebellar ataxia [Dupre et al.,

2007], are encoded by the SYNE1 and SYNE2 genes. Fifteen serine

residues in nesprin 1 and ten serine residues in nesprin 2 are

potential phosphorylation sites (Fig. 2). Moreover, tyrosine and

threonine residues are potential targets of phosphorylating

enzymes. A proteomic study has identified acetylated lysines [Zhao

et al., 2010] in the nesprin 1 sequence. Another proteomic study has

shown that phosphorylation sites in the isoform 1 of nesprin 2 may

be detected both in mitotic and interphase HeLa cell extracts

[Dephoure et al., 2008].

MAN1

MAN1 is an integral membrane protein of the nuclear envelope

which is also called LEMD3. It is encoded by the LEMD3 gene on

chromosome 12q14 [Lin et al., 2000]. Mutations in the gene give rise

to Osteopoikilosis, Buschke–Ollendorff syndrome and Melorheos-

tosis, diseases affecting bone mineralization. Twenty serine, five

threonine and three thyrosine residues are potential or proven

phosphorylation sites in the MAN1 sequence (Fig. 2). MAN1 is

phosphorylated in mitotic Xenopus egg extracts at Thr-209, Ser-351

and Ser-402 and phosphorylation abolishes binding of the LEM

domain to BAF, which in turn mediates DNA interaction [Hirano

et al., 2009]. Moreover, Ser-463 is phosphorylated in interphase

extracts, but the downstream events are as yet unknown [Hirano

et al., 2009].

LBR

The lamin B receptor is a transmembrane protein interacting with

lamin B and chromatin. Mutations in LBR are associated with mild

clinical phenotypes [Shultz et al., 2003] or severe diseases such as

Greenberg dysplasia, depending on the mutated site [Waterham

et al., 2003]. Four potential acetyl-lysine residues have been mapped
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in LBR (Fig. 2). Moreover, phosphorylable sites are detected by

bioinformatics analysis. A key phosphorylated site, serine 71 in LBR,

is required for the assembly of the nuclear envelope at the end of

mitosis [Lu et al., 2010]. Phosphorylation of serine 71 is elicited by

p34(cdc2), a kinase also involved in mitotic phosphorylation of

other residues in the nuclear envelope protein [Lu et al., 2010;

Nikolakaki et al., 1997]. On the other hand, PP1 dephosphorylates

aminoacidic residues required for binding of LBR to chromatin [Ito

et al., 2007]. Thus, phosphorylation/dephosphorylation of LBR by

cell cycle-dependent enzymes is used to regulate chromatin

association and membrane vescicles targeting at the end of mitosis,

the latter process also implicating physical interaction of LBR with

importins [Lu et al., 2010; Zwerger et al., 2010].

LAP2alpha

LAP2alpha is one of the splicing products of the TMPO gene and it is

a nuclear lamina-associated polypeptide [Dechat et al., 2000], which

is prevalently localized in the nucleoplasm [Naetar et al., 2008].

LAP2alpha is phosphorylated in interphase cells and undergoes

hyperphosporylation at the onset of mitosis (Fig. 2). The protein

kinase CKII phosphorylates the N-terminus of LAP2alpha, while up

to seven mitotic phosphorylated serines are located in the C-

terminal chromatin binding domain of LAP2alpha [Dechat et al.,

1998]. Phosphorylation of the latter residues by Cdk1 allows

detachment of LAP2alpha from chromatin, while does not affect

nuclear envelope breakdown [Gajewski et al., 2004]. The major Cdk1

phosphorylation site in LAP2alpha is serine 423, which is not

sufficient, however, to allow chromatin detachment [Gajewski et al.,

2004]. Nevertheless, impairment of phosphorylation at all the target

sites in the protein C-terminus, makes LAP2alpha constitutively

associated with chromosomes, throughout cell division [Gajewski

et al., 2004].

ZMPSTE24

A relevant advance in lamin and laminopathies research will be the

identification of enzymes and pathways involved in the regulation

of prelamin A processing enzymes. ZMPSTE24 is a transmembrane

protein of the endoplasmic reticulum and the nuclear envelope,

which catalyses cleavage of prelamin A to yield mature lamin A. It

has been demonstrated that its activity on prelamin A is restricted to

the nuclear envelope [Barrowman et al., 2008], while prelamin A is

the only substrate so far identified for this enzyme in mammalian

cells [Barrowman et al., 2008]. Mutations in the FACE1 gene

encoding ZMPSTE24 cause Restrictive Dermopathy (RD), when

occurring in the homozygous state, or several forms of premature

aging syndromes including progeria or Mandibuloacral Dysplasia

(MADB), when mutations are in the heterozygous state [Agarwal

et al., 2003]. Although ZMPSTE24 activation has been demonstrated

to be zinc-dependent, at least in one out of the two prelamin A

cleavage steps [Corrigan et al., 2005], the factors regulating its

expression levels and activity are largely unknown. The best human

model to study ZMPSTE24 activity should be Restrictive Dermo-

pathy cells, which represent a knockout model for FACE1. An

intriguing yet unsolved question is whether expression of

ZMPSTE24 is modulated in cells during either cellular prolifera-

tion/differentiation or during cellular or organismal ageing
JOURNAL OF CELLULAR BIOCHEMISTRY



[Ukekawa et al., 2007]. Some evidence has been published that

ZMPSTE24 expression is reduced in senescent tissues [Ukekawa

et al., 2007]. However, the signaling pathways affecting ZMPSTE24

levels have not been elucidated. Interestingly, a bioinformatics

analysis has identified MEF2 and p53 dependent sequences in the

FACE1 promoter, suggesting that both muscle differentiation and

ageing (implying MEF2 and p53 regulation, respectively) could

require modulation of ZMPSTE24 expression. Consistent with these

possibilities, prelamin A accumulation was determined in endothe-

lial vascular cells during ageing [Ragnauth et al., 2010].

TORSINA

TorsinA is a nuclear membrane AAA ATPase, which is mutated in

Torsion dystonia [Kim et al., 2010]. Nuclear envelope binding

partners of torsinA are LAP1 and LULL1 [Kim et al., 2010]. The most

likely function of torsinA is to mediate nuclear movement,

while maintaining nuclear envelope integrity. Consistent with this

proposed function, torsinA mutations alter the morphology of the

perinuclear space [Goodchild et al., 2005], an effect also observed in

Mandibuloacral Dysplasia and nesprin-linked EDMD. Nesprin 1 and

2 are, in fact, binding partners of torsinA [Nery et al., 2008]. An

unbalanced cholinergic transmission plays a pivotal role in dystonia

[Martella et al., 2009], but the signaling mechanisms leading to this

pathogenetic effects are still elusive (Fig. 2).

MATRIN 3

Matrin 3 is a nuclear matrix protein associated with another

inherited muscle disease, the autosomal dominant distal myopathy

[Senderek et al., 2009]. Matrin 3 harbors 23 potentially phosphory-

lated serines and 12 potential phosphotyrosine residues (Fig. 2).

Moreover, six lysine residues are potentially acetylated. The best

known kinase targeting matrin 3 is PKA, which has been shown

to phosphorylate the nuclear matrix protein in neuronal nuclei

downstream of the NMDA receptors [Giordano et al., 2005].

Phosphorylation by PKA triggers matrin 3 degradation, while

inhibition of PKA activity causes neuronal death [Giordano et al.,

2005]. Thus, altered protein phosphorylation could be implicated in

pathogenetic processes. This is particularly relevant, since matrin 3

has been shown to associate with specific chromosome territories

and to be excluded from heterochromatin [Zeitz et al., 2009].

Hypothetically, it could be affected not only in autosomal dominant

distal myopathy, but also in other laminopathies known to feature

chromatin defects [Maraldi et al., 2006].

FHL1

FHL1, also known as SLIM1, is a LIM protein, that is, a protein

harboring domains capable of binding both the transcriptional

machinery and the actin cytoskeleton [Shathasivam et al., 2010].

FHL1, has been localized in the I-discs of mature muscle fibers and in

the plasmalemma [Schessl et al., 2008] and it has been reported to

shuttle between the nucleus and the cytoplasm in myoblasts, while it

is excluded from the nucleus in myotubes [Cottle et al., 2009].

Subcellular localization of FHL1 involves its interaction with

the protein phosphatase 2 (PP2) [Wong et al., 2010]. However,

pathogenetic mutations in FHL1 cause massive protein mislocaliza-
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tion and accumulation into perinuclear aggregates called aggre-

somes [Schessl et al., 2008]. Importantly, FHL1 has been implicated

in the regulation of myotube hypertrophy and myonuclear

positioning [Cowling et al., 2008], a function shared by nesprins

and SUN proteins, which is emerging as a key aspect in muscle

differentiation and disease.

SIGNALING PATHWAYS AFFECTED IN
LAMINOPATHIES

To understand how genetic or epigenetic variations in nuclear

envelope/lamina proteins result in significant changes in cellular

signaling pathways is a major goal of clinical research. This is

because components of potentially affected signaling pathways turn

into targets of therapeutic protocols and give hope of rescuing the

disease phenotype. We will summarize in the following paragraphs

the main signaling pathways which appear to be implicated in

laminopathies (Fig. 3).

MUSCULAR DYSTROPHIES

pRb. pRb is implicated in the regulation of cell cycle exit through

modulation of the E2F transcription factor. Deregulation of the

interplay of the nuclear envelope-associated proteins with pRb and

muscle regulatory factors (MRFs) results from altered expression

of A-type lamins and emerin [Favreau et al., 2008]. Regenerating

muscle from Emd-deficient mice shows altered pRb activity and a

consequent delay in the induction of the muscle transcription factor

MyoD [Melcon et al., 2006]. In Lmna-null mice, the pRb/MyoD

pathway is affected and targets of pRb signaling such as MyoD,

desmin and M-cadherin are downregulated [Frock et al., 2006].

Consistently, in LAP2alpha knockout muscle satellite stem cells,

myogenic differentiation is delayed possibly due to lack of

LAP2alpha-mediated regulation of pRb activity [Gotic et al.,

2010b]. Thus, since both A-type lamins and LAP2-a are involved

in the regulation of cell cycle exit through modulation of the pRb

expression, localization and phosphorylation [Naetar and Foisner,

2009], altered expression of lamin A/C and emerin in EDMD muscle

cells should cause altered pRb-mediated activation of cellular

differentiation [Markiewicz et al., 2005; Bakay et al., 2006].

Smads. MAN1 is a negative regulator of regulatory Smad-mediated

signal transduction [Lin et al., 2005]. MAN1 co-purifies with A-type

lamins and binds to them directly as well to emerin. The absence of

A-type lamins also affects the localization at the inner nuclear

membrane of MAN1. Hence, altered expression of MAN1 or A-type

lamins may impact on the ability of MAN1 to bind and regulate

Smads [Bengtsson, 2007].

In fact, defects in regulatory Smads have been reported in

laminopathic cells. In embryonic fibroblasts from Lmna null mice, it

has been shown that phosphorylation kinetics of Smad2 and Smad3

induced by TGF-b are altered, with a more rapid phosphorylation

occurring that dissipates faster [Van Berlo et al., 2005]. Moreover,

cardiac and skeletal muscle from homozygous mice carrying the

lamin A/C H222P substitution, which causes EDMD in humans,

show an excess accumulation of phosphorylated Smad2 and Smad3

in nuclei [Arimura et al., 2005]. These effects could also be due to
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altered interaction of A-type lamins with PPA2 phosphatase, which

could result into a A-type lamin-mediated dephosphorylation of

Smads [Van Berlo et al., 2005].

ERK. In satellite cells, p38 MAP kinase activation is necessary to

exit the cell cycle for differentiation. ERK activation is reduced in

C2C12 skeletal myoblasts treated with siRNA to knock down A-type

lamins or emerin [Muchir et al., 2009]. Defective differentiation of

myoblasts expressing the pathogenetic R453W LMNA mutation was

observed, but it did not correlate with ERK 1/2 activation [Favreau

et al., 2008]. Nevertheless, myogenesis was enhanced by a treatment

with the ERK1/2 inhibitor PD98059 and insulin-like growth factor II,

which increased the pool of dephosphorylated pRb [Favreau et al.,

2008]. Thus, it is expected that, although Erk 1/2 activation may

not be affected in EDMD skeletal myoblasts, stimulation of pRB

dephosphorylation by inhibition of its kinase cdk4, might prove

useful to rescue myogenic differentiation.

CARDIOMYOPATHY

ERK/JNK. Activated ERK 1/2 binds to lamin A/C, releasing the

transcription factor cFos, which is bound to lamin A/C: this event

makes cFos available for pERK-mediated activation [Gonzalez et al.,

2008]. Abnormal activation of ERK and JNK activity has been

reported to occur in the cardiac muscle of animal models of EDMD

that feature dilated cardiomyopathy [Muchir et al., 2009], or in

muscle cells lacking emerin [Muchir et al., 2007a]. In hearts of mice

carrying the H222P Lmna mutation, the levels of phosho-JNK and

phospho-ERK1/2, mediators of hypertrophic response, are increased

[Muchir et al., 2007b]. A further demonstration of the key role of

ERK activation in the pathogenesis of dilated cardiomyopathy is

represented by the finding that the ERK inhibitor PD98059 is able to

block the development of cardiomyopathy in LmnaH222P/H222P mice

[Muchir et al., 2009]. These findings suggest that both emerin and

lamin A/C are negative regulators of MAPK signaling, although

the mechanism of activation of this signaling cascade following

mutation of these proteins is still unclear.

Stretching forces are mediators of ERK1/2 signaling; in this

contest, both lamin A/C deficient and emerin-deficient fibroblasts,

in response to mechanical strain, display a reduced expression of the

mechanosensitive genes egr-1 and iex-1 and increased percentage of

apoptotic cells [Lammerding et al., 2005]. Also NF-kB has been

reported to be involved in pathological cardiac hypertrophy;

interestingly, NF-kB-regulated transcription in response to mechan-

ical stress is attenuated in Lmna�/� cells [Lammerding et al., 2005].

pRb. A large amount of data indicate that expression of

components of the pRb-MyoD signaling cascade is disrupted in

both animal models of EDMD, and in EDMD1 and EDMD2 skeletal

muscle [Melcon et al., 2006]. Some evidence suggests that this could

also occur in cardiac tissue. A major lamin binding partner, which

regulates pRb activation is LAP2alpha. A mutation in LAP2a, that

interferes with lamin A binding, has been reported to cause dilated

cardiomyopathy in humans [Taylor et al., 2005]. Moreover, it has

been shown that knockout mice for LAP2alpha are affected by

systolic dysfunction and late onset fibrosis [Gotic et al., 2010a]. The

direct involvement of pRb defects in the pathogenesis of lamin-

linked cardiomyopathy remains to be established.
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Wnt-b-catenin. An involvement of b-catenin in the develop-

ment of EDMD1 was suggested, by the observation that emerin is

localized both in the nucleus and in the intercalated discs of

myocardium [Cartegni et al., 1997]. Recent data have highlighted a

major role of emerin in b-catenin signaling in the heart [Wheeler

et al., 2010]. Emerin-b-catenin interactions, when analyzed in HEK-

293 cells, indicate that over-expression of emerin inhibits b-catenin

nuclear accumulation and downstream signaling, while emerin

absence, as in EDMD cells, causes nuclear accumulation of

b-catenin due to impaired export [Markiewicz et al., 2006; Wheeler

et al., 2010]. It has been then hypothesized that the observed rapid

growth of Emd�/� fibroblasts could depend on the activation of

b-catenin [Markiewicz et al., 2006], which could account for cardiac

fibrosis. More importantly, emerin has been shown to mislocalize

b-catenin from the intercalated discs, a key location of b-catenin in

heart, which could have deleterious effects on cardiac conduction

and stress resistance [Wheeler et al., 2010].

Fibrosis has been implicated in the pathogenesis of cardiomyo-

pathy [Kaye et al., 2010]. Increased collagen production might

depend on the deregulation of TGF-b/Smad signaling in Lmna-null

mice, which results into tissue fibrosis in both skeletal muscle and

heart [Van Berlo et al., 2005]. However, increased fibrosis can also be

induced by the MAPK stress signaling [Muchir et al., 2007a], as well

as by the Wnt signaling, which appears to implicated into abnormal

fibrogenic conversion of aged muscle satellite cells during muscle

regeneration.

LIPODYSTROPHY

SREBP1/PPARgamma. Some laminopathies, including FPLD and

MADA show partial lipodystrophy, whilst generalized lipodystrophy

is present in MADB and HGPS. These laminopathies share the

molecular defect, consisting of impaired or reduced processing of

the lamin A precursor [Capanni et al., 2005; Araujo-Vilar et al.,

2009; Columbaro et al., 2005] reviewed in Maraldi and Lattanzi

[2007]. Adipocyte differentiation involves the induction of the

transcription factor PPAR-g, triggered by active SREBP1. A direct

link between accumulation of prelamin A and alterations in the

adipogenic differentiation occurring in FPLD has been then

established [Capanni et al., 2005]. In cells accumulating prelamin

A, an in vivo binding occurs between prelamin A and SREBP1;

prelamin A sequesters SREBP1 at the nuclear rim, reducing the pool

of DNA-bound active transcription factor; retention of SREBP1

causes down-regulation of PPAR-g expression and reduces the rate

of pre-adipocyte differentiation [Barroso et al., 1999; Caron et al.,

2001; Capanni et al., 2005].

Importantly, PPAR-g mutations cause FPLD3, a largely over-

lapping disease of adipose tissue [Barroso et al., 1999] supporting

the view that a major pathogenetic pathway is triggered by

altered PPAR-g expression in FPLD. Interestingly, treatment of pre-

adipocytes accumulating prelamin A with the PPAR-g ligand TDZ

elicited rescue of adipogenic program [Capanni et al., 2005],

giving insight into current therapeutic approaches to lipodystrophy

[Gambineri et al., 2008].

Wnt-b-catenin. Regulation of PPAR-g levels during adipogenic

conversion of human precursors has been shown to require also

emerin presence in cells [Tilgner et al., 2009]. Emerin has been
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shown to play a role of molecular sensor, which senses the increase

in lamin A/C levels at the onset of adipogenesis. Moreover, emerin-

null fibroblasts have been reported to show increased b-catenin

activity and PPAR-g accumulation in the nucleus [Tilgner et al.,

2009]. The complex mechanism involving b-catenin, PPAR-g,

lamin A/C, and emerin in the regulation of adipogenic differentia-

tion [Boguslavsky et al., 2006; Tilgner et al., 2009] needs to be

further investigated and reconciled with the clinical data showing

far different pathogenetic effects of emerin and lamin mutations on

adipose tissue homeostasis. However, the whole evaluation of these

data and of data showing prelamin A role in PPAR-g regulation

[Capanni et al., 2005; Araujo-Vilar et al., 2008] establish a central

role of nuclear envelope proteins in PPAR-g-dependent signaling.

Notch. Evidence of Notch-dependent signaling in lipodystrophy

has been obtained in HGPS cells. Hyperactivation of Notch-

dependent signaling has been reported. Intriguingly, hyperactiva-

tion of Notch appears to be dependent on failure of the Notch

transcriptional coactivator to be retained at the nuclear lamina, as it

occurs in control cells [Scaffidi and Misteli, 2008]. This finding adds

to those previously reported showing that transcription factors,

including SREBP1, cFos, Smads, pRb, are anchored by nuclear

lamina proteins in order to regulate their localization and activity.

Altered Notch signaling results into decreased adipogenic conver-

sion of human mesenchimal stem cells, without reduction of PPAR-

g levels, but with altered PPAR-g transactivation activity [Scaffidi

and Misteli, 2008].

Insulin/IGF. Although not directly linked to lamins, insulin

signaling has been demonstrated to be altered in lipodystrophy and

metabolic syndromes caused by LMNA mutations [Young et al.,

2005]. Impaired response to insulin signaling is a major impairment

in FPLD2 and metabolic syndrome, yet it can be rescued by

treatment with metformin, in combination with pioglitazone

[Gambineri et al., 2008].

As a general comment on data obtained on adipocyte

differentiation in laminopathies, a caveat should be considered.

Diverse cellular models from different species and origin, including

pre-adipocytes, mesenchimal stem cells, fibroblasts have been tested

in different studies. This may account for such a complex picture

emerging from the whole evaluation of published data and further

suggests that the cell type truly involved in laminopathies

pathogenesis in different tissues (or a common progenitor) remains

to be identified.

BONE ABNORMALITIES

TGF-b-Smads. MAN1 binds to regulatory Smads, antagonizing

cellular responses to TGF-b and bone morphogenic protein [Konde

et al., 2010]. Human subjects with heterozygous loss of function

mutations in the gene encoding MAN1 exhibit increased bone

density [Hellemans et al., 2004], and overexpression of TGF-b.

This causes enhanced expression of genes activated by TGF-b and

BMPs, possibly due to failure of mutated MAN1 to anchor Smads

[Bengtsson, 2007].

In Mandibuloacral Dysplasia, as well as in Restrictive Dermo-

pathy and HGPS, bone resorption due to osteolysis of phalanges,

clavicle, and mandible are observed [Columbaro et al., 2005;

Moulson et al., 2005; Lombardi et al., 2007]. We have tested the
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effects of accumulation of prelamin A in peripheral blood

monocytes induced to differentiate into osteoclasts by the receptor

activator of NF-kB ligand (RANKL) [Zini et al., 2008]. Increased rate

of cell differentiation, but reduced resorption activity of osteoclasts

has been determined in the presence of high prelamin A levels [Zini

et al., 2008]. Osteoclasts lacking resorptive activity, however, play a

role in the regulation of osteoblast number [Karsdal et al., 2008],

suggesting a function independent on bone resorption. Thus it

appears likely that osteoblast proliferation/differentiation and

osteoclast-osteoblast interplay are affected in laminopathic patients

due to altered inter-cellular signaling. Regarding intracellular

signaling, cFos, the transcription factor anchored by lamin A at the

nuclear envelope, has been implicated in the osteoclast differentia-

tion pathway [Ivorra et al., 2006; Gonzalez et al., 2008]. The actual

levels and localization of cFos in laminopathic osteoblasts and

osteoclasts deserves investigation.

SYSTEMIC DISORDERS IN LAMINOPATHIES

Many tissues in laminopathies are affected by degenerative

processes resembling ageing, including sarcopenia, osteopenia,

cardiomyopathy, lipo-atrophy, atherosclerosis, and dermo-athro-

phy. These disorders might reflect an altered balance between cell

loss and cell replacement in stem cells. In this context, altered pRb,

Wnt, and p53 signaling have been proposed as pathogenetic

pathways [Hernandez et al., 2010; Liu et al., 2010; Marji et al., 2010].

Moreover, altered IGF-growth hormone dependent metabolism has

been implicated in the pathogenesis of progeroid laminopathies

[Marino et al., 2010].

p53. Hyperactivation of the p53 pathway occurs in Zmpste24-

null mice and it is directly linked to premature ageing, since double

knockout of p53 and Zmpste24 partially rescues the ageing

phenotype [Varela et al., 2005]. Consistently, hyperactivation of

p53 in p53 knockin mice triggers the ageing process, through

depletion of adult stem cells [Liu et al., 2010].

Notch. Notch-dependent signaling regulates cell fate and stem

cell differentiation. Defective Notch signaling has been implicated

in HGPS, because stem cells from HGPS patients present an up-

regulation in the expression of Notch target genes, possibly due to

the increased levels of progerin [Scaffidi and Misteli, 2008].

Expression of progerin in human MSCs impairs their differentiation

potential by interfering with the Notch signaling pathway, which is

essential in stem cell regulation [Scaffidi and Misteli, 2008]. Because

Notch3 modulates the response to vascular injury, it has been

suggested that progerin-induced defects in Notch signaling

contribute to alterations in the large arteries of HGPS patients

[Andres and Gonzalez, 2009].

Wnt. Impaired Wnt signaling leads to dysfunction of epidermal

cell renewal in Zmpste24-null mice undergoing accelerated aging

[Espada et al., 2008]. This is consistent with recent data showing

altered Wnt signaling in a mouse model of HGPS featuring

farnesylated prelamin A accumulation [Hernandez et al., 2010].

Again, altered nuclear localization and transcriptional activity of a

transcription factor, Lef1, occurs upstream of the signaling defect, a

finding also confirmed in human cells [Hernandez et al., 2010]. On

the other hand, altered Wnt signaling in progeroid cells affects

several target genes, including those encoding extra-cellular matrix
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proteins such as fibronectin and collagen I chains, leading to

production of an altered matrix that affects cellular proliferation

[Hernandez et al., 2010].

IGF1/GH. IGF1 signaling is an important regulator of longevity

in many organisms [Fadini et al., 2010]. Progeroid Zmpste24�/�
mice present transcriptional alterations in genes that regulate the

somatotroph axis, as well as high circulating levels of growth

hormone and reduction of IGF-1 [Marino et al., 2010]. The basis for

this defective signaling appears to be an impaired response to GH,

which in turn elicits altered expression of IGF1. Importantly,

administration of IGF1 extends life span in progeroid mice, thus

showing a major role of low IGF1 levels in the onset of premature

ageing [Marino et al., 2010].

The latter observation, along with data reported on Wnt/b catenin

and insulin signaling defects, suggests that signaling effectors

represent promising targets of therapeutic interventions in

laminopathies, provided that molecules capable of modifying these

effectors are often already available.
CONCLUSIONS

The increasing interest of research on nuclear lamins and

laminopathies appears mainly to depend on the unexpected finding

that studies on disease pathogenesis of these very rare diseases

might yield crucial insights into processes involved in metabolic

disorders, cardiomyopathy and normal aging. Studies in both

cellular and animal models of laminopathies have provided valuable

information into the role of lamins in signaling pathways. It is

evident that lamins or lamin-associated nuclear envelope proteins

are required to sequester tissue-specific regulatory factors, along

specific signaling pathways. This and other as yet unknown

mechanisms allow lamins and their partner proteins to regulate

signaling pathways involved in cell cycle exit and cellular

differentiation, ultimately modulating stem cell activity and tissue

homeostasis. Lamin A/C mutations may alter or upregulate the

activity of multiple signaling effectors such as ERK 1/2, c-Fos, IGF,

Wnt/b-catenin, SREBP1-PPAR-g, insulin-AKT, Smads-TGF-b.

Since all these molecules are involved in diverse signaling

pathways, while several laminopathic disorders are tissue-specific,

it remains to be established the factor(s) that confers such a

specificity to the pathogenetic mechanism. Among these factors, not

only lamin-binding proteins, but also epigenetic regulators such as

microRNAs and modifying genes appear to play a relevant role.

So far, promising therapeutic approaches for lipodystrophy,

progeria, or cardiac laminopathies have been based on medicines

counteracting PPAR-g downregulation, such as TZDs [Gambineri

et al., 2008], prelamin A farnesylation, such as statins [Columbaro

et al., 2005; Varela et al., 2008], or Erk 1/2 hyperactivation, such as

PD98059 [Muchir et al., 2009]. Stimulation of the GH-IGF pathway

is now emerging as new therapeutic approach for progeroid

laminopathies [Marino et al., 2010]. Thus, it appears that

improvement of our knowledge of the signaling network implicated

in laminopathies will provide further targets for therapeutic

strategies.
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